domingo, 19 de março de 2017


Efeito Tunel-fotoeletromagnético Graceli.
Efeito 1,501 a 1.510. a 1.550.

A energia eletromagnética que transpassa barreiras à distância e sofre variações e efeitos conforme a intensidade da energia, a condutividade do meio entre emissor e barreira, e densidade e condutividade da barreira.
E com a inserção de fótons estes efeitos passam a ter outras intensidades e alcances, vibrações, incertezas e distribuições, pois se forma uma intensidade variacional em todos os fenômenos.
Com variações  sobre entropias, refrações, frequência de ondas, espectros, fluxos de saltos quântico, flutuações, quântica, emaranhamentos, paridades,e outros fenômenos.


Tunelamento térmico. Eletromagnético.

Com a inserção de fótons sobre materiais radioativos e sobre barreira de metais, ou cristais se terá variações de vibrações, frequência de ondas de eletromagnetismo de tunelamento conforme os agentes envolvidos, como tipos, estados, e potenciais de energias, densidades, intensidade, condutividade,e outros fenômenos.
Ou seja, o tunelamento terá novos agentes e constituintes alem da radioatividade. Onde se terá também tunelamento de eletromagnetismo, e temperatura.

Porem, o fenômenos e o efeito de intensidade, alcance, progressividade, de interações entre íons, transformações elétrica para magnética e vice versa, frequência de ondas, entropias, e outros fenômenos tanto em barreiras quanto na propagação do tunelamento passam por variações e efeitos variacionais próprios.

O tunelamento quântico (ou efeito túnel) é um fenômeno que proporciona inúmeras aplicações tecnológicas através da aplicação direta dos conceitos da mecânica quântica. De acordo com este fenômeno, elétrons podem ser extraídos de superfícies metálicas sob as quais há um enorme gradiente de potencial, ou seja, um intenso campo elétrico local. Através de um dispositivo elétrico conhecido como microcatodo oco, duas camadas de metal intercaladas por uma fina camada de mica (com espessura d = 3 μm), perfurada com furo de diâmetro D = 200 μm e na pressão de 20 Torr, propiciou a emissão a frio de elétrons para um microcampo elétrico local de aproximadamente 15 V/nm. Os metais polarizados com uma diferença de potencial elétrico de aproximadamente 390 V permitiram a passagem dos elétrons através da barreira de potencial presente na região do furo catódico.



Efeito de Tunelamento de plasmas e outras temperaturas.

Placa metálica que apresenta microprotrusões em sua superfície pode gerar gradientes de potencial elétrico intensos na região próxima a esta superfície, quando o metal é polarizado eletricamente. Estas pequenas imperfeições na superfície, invisíveis a olho nu, não apenas alteram a direção do campo elétrico local e aumentam sua intensidade devido ao efeito das pontas [1]. Para valores de intensidade do campo elétrico local da ordem de 105 –106 Vcm−1 . onde outros fenômenos também ocorreram e também acompanharão efeitos variacionais com variações de frequência de ondas, de intensidades e distribuições, alcance , fluxos de proporcionalidade, tempo e espalhamento, e com alterações sobre entropias nas barreiras e no tunelamento, refrações, espectros, e dilatações e vibrações.

(dependendo da função trabalho do metal usado), há uma probabilidade de ocorrer a “emissão a frio” de elétrons da superfície metálica polarizada negativamente (superfície catódica).

 A emissão a frio (ou “electron field emission”) é um processo que ocorre em superfícies metálicas através da aplicação de intenso campo elétrico, onde os elétrons são extraídos através do fenômeno conhecido por tunelamento quântico ou efeito túnel.
E que terá efeitos variações destes fenômenos próprios para condições de temperatura extremas, tanto para o frio quanto para o super quente.

Variações de temperaturas elétrons podem ser perdidos se formam variações e outros tipos de química e com variações físicas variacionais. Onde efeitos e outros fenômenos surgem destas condições, levando a um relativismo de materialidade e processos físicos e uma incerteza quântica de efeitos de Graceli.

Em muitas situações experimentais ou de interesse prático é interessante obter uma fonte de elétrons que gere uma densidade de corrente elétrica de uma maneira não intrusiva, como a emissão a frio. Por exemplo, a emissão termiônica de elétrons não é interessante em certos casos, pois o material a ser analisado sofre grande variação de temperatura, podendo perder suas propriedades físicas e químicas, principalmente se o material for termosensível, como o biomaterial.




A aplicação de uma diferença de potencial (U) entre a sonda e a amostra torna factível o tunelamento quântico, através da criação de níveis desocupados de energia na superfície da amostra equivalentes com a energia potencial dos elétrons de sonda. Por exemplo, para um espaçamento d = 10 nm e para U = 10 V, a intensidade do campo elétrico será ε = U/d = 109 V/m, o suficiente para “extrair” elétrons do catodo (polo negativo, que pode ser o objeto ou a ponta condutora). O efeito túnel, segundo a mecânica quântica, surge como consequência da natureza ondulatória do elétron, pois este é descrito através de uma função de onda. Neste caso obedecendo o princípio da indeterminalidade relativística dos efeitos de Graceli
Porem, os níveis de desocupados de energia na superfície passam por variações e fluxos quânticos de vibrações e deslocamentos, seguindo o princípio da aleatoriedade e instabilidade quântica, termodinâmica, eletromagnética, de radioatividade e de tunelamento, com variações de efeitos sobre outros fenômenos como entropias, dilatações, vibrações, espectros, refrações, difrações, emaranhamentos e outros fenômenos, seguindo o princípio da indeterminalidade relativística dos efeitos de Graceli



Outra situação que podemos exemplificar ocorre na produção de plasmas em laboratório, onde a geração de elétrons secundários a frio favorece a manutenção da descarga elétrica com a respectiva redução da tensão elétrica, aumentando a eficiência de ionização do gás com a emissão a frio
Com variações e efeitos de Graceli para a relação entre a densidade de corrente elétrica e o campo elétrico local da superfície emissora de elétrons.

Em experimento recente, verificou-se que substâncias como o metanol (álcool COH4) podem ser formadas e destruídas em ambientes extremamente frios, como no espaço intergaláctico. A explicação para este fato vem do tunelamento quântico, pois se observou que mesmo submetido a temperaturas extremamente baixas, as reações químicas envolvendo o metanol ocorrem a uma taxa 50 vezes superior comparadas com as mesmas reações em condições normais [4]. Estas reações levam à produção de radicais hidroxilas, mesmo a −210 °C. Na pressão atmosférica, a ação da radiação eletromagnética no vapor de metanol não resulta em reações químicas favoráveis à produção destes radicais. Porém, no espaço intergaláctico, a pressão de aproximadamente 10−1 nTorr (ou 13 nPa) facilita os processos de tunelamento quântico, o que leva à explicação para a formação do radical metoxila, altamente reativo, detectado no espaço.

Porem, outras intensidades dos efeitos de Graceli também passam por variações conforme os agentes e condições atmosféricas, ou mesmo pressão atmosférica, ou espacial. Onde se forma uma mecânica de efeitos para estas condições de tunelamentos, tanto radioativo, térmico, eletromagnético.

Assim, as variações seguirão índices para variações de efeitos de Graceli para temperaturas extremamente baixas, normais e toleráveis, e extremas como em plasmas de astros. Onde se terá resultados, efeitos e fenômenos para cada situação.


Efeito fototunelamento Graceli..

Efeitos 1.491 a 1.500.

Com a emissão de fótons sobre material com radioatividade, com barreiras térmica e eletromagnética, e no próprio tunelamento se tem variações de partículas e nas freqüências de ondas, espalhamentos, distribuições, condutividades, conforme a intensidade de fótons inseridos e sua frequência, a temperatura e intensidade de radioatividade para cada tipo de elemento químico, para graus de temperatura, e intensidade de eletricidade e magnetismo, e o potencial de condutividade tanto do corpo emissor, da barreira, quanto dos fótons.

Com variações de fluxos e saltos quântico, como também de flutuações quântica, emaranhamentos, entropias, refrações, difrações, espectros, dilatações, vibrações, transformações, interações de íons positivos e negativos, e outros.

Com variações de proporcionalidade para todos os fenômenos, quântico, eletromagnético, de ondas, termodinâmico, radiodinâmico.


Mecânica Graceli de fluxos, e efeitos.
Mecânica de fluxos para iniciar, e desenvolver progressivamente variações térmica e termicidades, radioatividade e radioativicidades, eletromagnetismo e eletromagneticidades, atomicidade conforme números atômicos e elementos químico. E decaimentos de partículas e radioatividades [fissões, fusões, e isótopos].
Ou seja, para cada tipo e potencial de elemento químico, átomo, e outras partículas estes fenômenos variam conforme os graus de intensidades e condutividades e outros agentes que constitui cada partícula ou molécula.

Onde para cada tipo de material se tem uma mecânica, vibrações, interações de íons, fluxos quântico, flutuações quântica.

Como também para a Mecânica Graceli , ciclo de cadeias, efeitos e incertezas para tunelamentos.
Formando efeitos e mecânica para cada situação. [efeitos 1.461 a 1.490.


O mesmo acontece com as transformações, transmutações e decaimentos para fissões e fusões. Onde cada tipo de partícula e molécula constitui energias conforme intensidades para alguns tempos e outros não.

Nenhum comentário:

Postar um comentário